Properties

Label 12352.1674.772.d1.d1
Order $ 2^{4} $
Index $ 2^{2} \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(772\)\(\medspace = 2^{2} \cdot 193 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_{772}:C_{16}$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{386}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4\times C_{16}$
Normalizer:$C_4\times C_{16}$
Normal closure:$C_{193}:C_{16}$
Core:$C_1$
Minimal over-subgroups:$C_{193}:C_{16}$$C_2\times C_{16}$
Maximal under-subgroups:$C_8$
Autjugate subgroups:12352.1674.772.d1.a112352.1674.772.d1.b112352.1674.772.d1.c1

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$0$
Projective image$C_{772}:C_{16}$