Subgroup ($H$) information
Description: | $C_4^2$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(772\)\(\medspace = 2^{2} \cdot 193 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$a^{4}, b^{193}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{772}:C_{16}$ |
Order: | \(12352\)\(\medspace = 2^{6} \cdot 193 \) |
Exponent: | \(3088\)\(\medspace = 2^{4} \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{386}.C_{96}.C_2^3$ |
$\operatorname{Aut}(H)$ | $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $193$ |
Möbius function | $0$ |
Projective image | $C_{193}:C_{16}$ |