Properties

Label 12352.1674.6176.a1.a1
Order $ 2 $
Index $ 2^{5} \cdot 193 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(6176\)\(\medspace = 2^{5} \cdot 193 \)
Exponent: \(2\)
Generators: $b^{386}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{772}:C_{16}$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{386}:C_{16}$
Order: \(6176\)\(\medspace = 2^{5} \cdot 193 \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Automorphism Group: $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
Outer Automorphisms: $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{386}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{772}:C_{16}$
Normalizer:$C_{772}:C_{16}$
Minimal over-subgroups:$C_{386}$$C_4$$C_2^2$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{386}:C_{16}$