Properties

Label 12352.1642.4.b1.a1
Order $ 2^{4} \cdot 193 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8\times D_{193}$
Order: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(1544\)\(\medspace = 2^{3} \cdot 193 \)
Generators: $b^{772}, b^{8}, b^{386}, b^{193}, a^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{1544}.C_8$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{772}.C_{96}.C_2^4$
$\operatorname{Aut}(H)$ $C_3^5:D_6$, of order \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_8$, of order \(1544\)\(\medspace = 2^{3} \cdot 193 \)

Related subgroups

Centralizer:$C_8$
Normalizer:$C_{1544}.C_8$
Minimal over-subgroups:$C_{1544}:C_4$
Maximal under-subgroups:$C_4\times D_{193}$$C_{1544}$$C_{193}:C_8$$C_2\times C_8$

Other information

Möbius function$0$
Projective image$C_{193}:C_8$