Properties

Label 12348.x.588.c1.a1
Order $ 3 \cdot 7 $
Index $ 2^{2} \cdot 3 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Index: \(588\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{2} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $d^{7}, c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\He_7:C_6^2$
Order: \(12348\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$D_7\times C_{21}$
Normalizer:$C_7^2:C_6^2$
Normal closure:$C_7\times C_{21}$
Core:$C_3$
Minimal over-subgroups:$C_7\times C_{21}$$C_{21}:C_3$$C_3\times D_7$$C_3\times D_7$$C_{42}$
Maximal under-subgroups:$C_7$$C_3$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$0$
Projective image$C_7^2:(C_3\times D_{14})$