Properties

Label 12348.x.42.l1.b1
Order $ 2 \cdot 3 \cdot 7^{2} $
Index $ 2 \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:F_7$
Order: \(294\)\(\medspace = 2 \cdot 3 \cdot 7^{2} \)
Index: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ab^{3}c^{5}d^{9}, c, d^{3}, b^{14}d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\He_7:C_6^2$
Order: \(12348\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $F_7^2$, of order \(1764\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
$W$$D_7:F_7$, of order \(588\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_7^2:C_6^2$
Normal closure:$\He_7:C_6$
Core:$C_7^2:C_3$
Minimal over-subgroups:$\He_7:C_6$$C_{21}:F_7$$D_7:F_7$
Maximal under-subgroups:$C_7^2:C_3$$C_7\times D_7$$C_7:C_6$$F_7$
Autjugate subgroups:12348.x.42.l1.a112348.x.42.l1.c1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$\He_7:C_6^2$