Subgroup ($H$) information
Description: | $C_{11}:C_4$ |
Order: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
Generators: |
$ab, c^{7}, b^{4}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{77}:Q_{16}$ |
Order: | \(1232\)\(\medspace = 2^{4} \cdot 7 \cdot 11 \) |
Exponent: | \(616\)\(\medspace = 2^{3} \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{77}.C_{30}.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
$\operatorname{res}(S)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \) |
Related subgroups
Centralizer: | $C_2$ | |
Normalizer: | $C_{11}:Q_8$ | |
Normal closure: | $C_{77}:Q_8$ | |
Core: | $C_{22}$ | |
Minimal over-subgroups: | $C_{77}:C_4$ | $C_{11}:Q_8$ |
Maximal under-subgroups: | $C_{22}$ | $C_4$ |
Other information
Number of subgroups in this conjugacy class | $14$ |
Möbius function | $0$ |
Projective image | $C_{77}:D_4$ |