Properties

Label 1232.76.154.b1.a1
Order $ 2^{3} $
Index $ 2 \cdot 7 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab, b^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $C_{77}:Q_{16}$
Order: \(1232\)\(\medspace = 2^{4} \cdot 7 \cdot 11 \)
Exponent: \(616\)\(\medspace = 2^{3} \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{77}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$Q_{16}$
Normal closure:$C_{77}:Q_8$
Core:$C_4$
Minimal over-subgroups:$C_{11}:Q_8$$C_7:Q_8$$Q_{16}$
Maximal under-subgroups:$C_4$$C_4$

Other information

Number of subgroups in this conjugacy class$77$
Möbius function$-1$
Projective image$C_{77}:D_4$