Subgroup ($H$) information
Description: | $C_2^2\times D_{14}$ |
Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Index: | \(11\) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$a, c, d^{77}, b, d^{44}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_{154}:C_2^3$ |
Order: | \(1232\)\(\medspace = 2^{4} \cdot 7 \cdot 11 \) |
Exponent: | \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_{11}$ |
Order: | \(11\) |
Exponent: | \(11\) |
Automorphism Group: | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Outer Automorphisms: | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{35}.(C_2^4\times C_6).\PSL(2,7)$ |
$\operatorname{Aut}(H)$ | $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(10\)\(\medspace = 2 \cdot 5 \) |
$W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Centralizer: | $C_2^2\times C_{22}$ | ||
Normalizer: | $C_{154}:C_2^3$ | ||
Complements: | $C_{11}$ | ||
Minimal over-subgroups: | $C_{154}:C_2^3$ | ||
Maximal under-subgroups: | $C_2\times D_{14}$ | $C_2^2\times C_{14}$ | $C_2^4$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_{11}\times D_7$ |