Subgroup ($H$) information
| Description: | $Q_8\times D_{11}$ |
| Order: | \(176\)\(\medspace = 2^{4} \cdot 11 \) |
| Index: | \(7\) |
| Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Generators: |
$a, c^{77}, c^{154}, b, c^{28}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_{28}.D_{22}$ |
| Order: | \(1232\)\(\medspace = 2^{4} \cdot 7 \cdot 11 \) |
| Exponent: | \(308\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_7$ |
| Order: | \(7\) |
| Exponent: | \(7\) |
| Automorphism Group: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{11}\times A_4).C_{30}.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2\times S_4\times F_{11}$, of order \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times S_4\times F_{11}$, of order \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
| $W$ | $C_2\times D_{22}$, of order \(88\)\(\medspace = 2^{3} \cdot 11 \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $C_{14}\times D_{22}$ |