Properties

Label 12288.uf.8.R
Order $ 2^{9} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times C_4^2).S_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,2)(3,4)(5,6)(7,8)(17,18)(19,20)(21,22)(23,24), (5,6)(7,8)(9,12)(10,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^7.\GL(2,\mathbb{Z}/4)$
Order: \(12288\)\(\medspace = 2^{12} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_2^6.A_4.C_2^4.C_2$
$\operatorname{Aut}(H)$ $C_4^2:A_4.D_4.C_2^3$
$W$$C_2^3 . (C_2^3:S_4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^5.\GL(2,\mathbb{Z}/4)$
Normal closure:$C_4^2:C_2^4.S_4$
Core:$D_4^2:C_2^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed