Properties

Label 12288.bg.32.X
Order $ 2^{7} \cdot 3 $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4.D_{24}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 31 & 22 \\ 2 & 13 \end{array}\right), \left(\begin{array}{rr} 11 & 24 \\ 8 & 3 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 7 & 1 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 13 & 8 \\ 24 & 21 \end{array}\right), \left(\begin{array}{rr} 4 & 27 \\ 17 & 27 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 27 & 8 \\ 24 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_4^3.(C_4\times D_{24})$
Order: \(12288\)\(\medspace = 2^{12} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(786432\)\(\medspace = 2^{18} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_3:(C_2^2.C_2^6.C_2^3)$
$W$$D_{24}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$D_{24}.C_4^2$
Normal closure:$C_4^2.C_{24}.D_4.C_2$
Core:$C_2^2\times C_8$
Minimal over-subgroups:$C_2\times C_8.\GL(2,\mathbb{Z}/4)$$D_{24}.C_4^2$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(C_2^2\times C_4) . (C_2^2\times S_4)$