Properties

Label 12288.bfd.8.J
Order $ 2^{9} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times C_4^2).S_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(5,6)(7,8)(13,14)(15,16)(21,22)(23,24), (1,2)(7,8)(9,16)(10,15)(11,13)(12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times C_4^3).\GL(2,\mathbb{Z}/4)$
Order: \(12288\)\(\medspace = 2^{12} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3:C_{20}.D_4$, of order \(49152\)\(\medspace = 2^{14} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_4^2:A_4.D_4.C_2^3$
$W$$C_5^2\wr C_2:C_4^2$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4^2:A_4.C_2.D_4.C_2$
Normal closure:$(C_2\times C_4^2).\GL(2,\mathbb{Z}/4)$
Core:$(C_2^2\times C_4^2):A_4$
Minimal over-subgroups:$(C_2\times C_4^2).\GL(2,\mathbb{Z}/4)$$C_2^5.\GL(2,\mathbb{Z}/4)$$C_4^2:A_4.C_2^2:C_4$
Maximal under-subgroups:$(C_2^2\times C_4^2):A_4$$(C_2\times C_4^2).S_4$$C_2\times C_2^2.C_2^5.C_2$$C_2^4.S_4$$C_2^4.S_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_5\wr C_2^2:C_4$