Properties

Label 1218.7.406.a1.a1
Order $ 3 $
Index $ 2 \cdot 7 \cdot 29 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(406\)\(\medspace = 2 \cdot 7 \cdot 29 \)
Exponent: \(3\)
Generators: $a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{203}:C_6$
Order: \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
Exponent: \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{29}:(C_7^2:(C_2\times C_{12}))$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(4872\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 29 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times D_{29}$
Normalizer:$C_3\times D_{29}$
Normal closure:$C_7:C_3$
Core:$C_1$
Minimal over-subgroups:$C_{87}$$C_7:C_3$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-29$
Projective image$C_{203}:C_6$