Subgroup ($H$) information
| Description: | $C_7$ |
| Order: | \(7\) |
| Index: | \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \) |
| Exponent: | \(7\) |
| Generators: |
$b^{29}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_{203}:C_6$ |
| Order: | \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \) |
| Exponent: | \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Quotient group ($Q$) structure
| Description: | $C_3\times D_{29}$ |
| Order: | \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \) |
| Exponent: | \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \) |
| Automorphism Group: | $C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \) |
| Outer Automorphisms: | $C_2\times C_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{29}:(C_7^2:(C_2\times C_{12}))$ |
| $\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(5684\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 29 \) |
| $W$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
| Centralizer: | $C_{203}$ | ||
| Normalizer: | $C_{203}:C_6$ | ||
| Complements: | $C_3\times D_{29}$ | ||
| Minimal over-subgroups: | $C_{203}$ | $C_7:C_3$ | $D_7$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Möbius function | $-29$ |
| Projective image | $C_{203}:C_6$ |