Properties

Label 1218.7.174.a1.a1
Order $ 7 $
Index $ 2 \cdot 3 \cdot 29 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Exponent: \(7\)
Generators: $b^{29}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{203}:C_6$
Order: \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
Exponent: \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_3\times D_{29}$
Order: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Exponent: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Automorphism Group: $C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \)
Outer Automorphisms: $C_2\times C_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{29}:(C_7^2:(C_2\times C_{12}))$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5684\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 29 \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{203}$
Normalizer:$C_{203}:C_6$
Complements:$C_3\times D_{29}$
Minimal over-subgroups:$C_{203}$$C_7:C_3$$D_7$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-29$
Projective image$C_{203}:C_6$