Subgroup ($H$) information
| Description: | $C_{87}$ |
| Order: | \(87\)\(\medspace = 3 \cdot 29 \) |
| Index: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Exponent: | \(87\)\(\medspace = 3 \cdot 29 \) |
| Generators: |
$b^{406}, b^{21}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,29$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.
Ambient group ($G$) information
| Description: | $C_3\times D_{203}$ |
| Order: | \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \) |
| Exponent: | \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
| Description: | $D_7$ |
| Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Automorphism Group: | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $C_3$, of order \(3\) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{203}.C_{42}.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_{28}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_{28}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_{609}$ | |
| Normalizer: | $C_3\times D_{203}$ | |
| Complements: | $D_7$ | |
| Minimal over-subgroups: | $C_{609}$ | $C_3\times D_{29}$ |
| Maximal under-subgroups: | $C_{29}$ | $C_3$ |
Other information
| Möbius function | $7$ |
| Projective image | $D_{203}$ |