Properties

Label 1218.11.14.a1.a1
Order $ 3 \cdot 29 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{87}$
Order: \(87\)\(\medspace = 3 \cdot 29 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(87\)\(\medspace = 3 \cdot 29 \)
Generators: $b^{406}, b^{21}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,29$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_3\times D_{203}$
Order: \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
Exponent: \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_7$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{203}.C_{42}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_{28}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{28}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{609}$
Normalizer:$C_3\times D_{203}$
Complements:$D_7$
Minimal over-subgroups:$C_{609}$$C_3\times D_{29}$
Maximal under-subgroups:$C_{29}$$C_3$

Other information

Möbius function$7$
Projective image$D_{203}$