Properties

Label 1218.1.7.a1.a1
Order $ 2 \cdot 3 \cdot 29 $
Index $ 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{29}$
Order: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Index: \(7\)
Exponent: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Generators: $a^{7}, b^{58}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{29}:C_{42}$
Order: \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
Exponent: \(1218\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_7$
Order: \(7\)
Exponent: \(7\)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \)
$\operatorname{Aut}(H)$ $C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_{29}:C_{14}$, of order \(406\)\(\medspace = 2 \cdot 7 \cdot 29 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{29}:C_{42}$
Complements:$C_7$
Minimal over-subgroups:$C_{29}:C_{42}$
Maximal under-subgroups:$C_{87}$$D_{29}$$C_6$

Other information

Möbius function$-1$
Projective image$C_{29}:C_{14}$