Properties

Label 1216.338.38.a1.a1
Order $ 2^{5} $
Index $ 2 \cdot 19 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(38\)\(\medspace = 2 \cdot 19 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, d^{19}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{76}$
Order: \(1216\)\(\medspace = 2^{6} \cdot 19 \)
Exponent: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{19}$
Order: \(38\)\(\medspace = 2 \cdot 19 \)
Exponent: \(38\)\(\medspace = 2 \cdot 19 \)
Automorphism Group: $F_{19}$, of order \(342\)\(\medspace = 2 \cdot 3^{2} \cdot 19 \)
Outer Automorphisms: $C_9$, of order \(9\)\(\medspace = 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}.(C_{18}\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
$W$$C_2^3:C_4$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_{38}$
Normalizer:$(C_2\times C_4).D_{76}$
Minimal over-subgroups:$C_2^3:C_{76}$$C_2^3.D_4$
Maximal under-subgroups:$C_2\times D_4$$C_2^2:C_4$

Other information

Möbius function$19$
Projective image$C_2^2.D_{76}$