Properties

Label 1216.338.16.h1.a1
Order $ 2^{2} \cdot 19 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{19}:C_4$
Order: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Generators: $b, b^{2}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{76}$
Order: \(1216\)\(\medspace = 2^{6} \cdot 19 \)
Exponent: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}.(C_{18}\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2\times F_{19}$, of order \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
$\operatorname{res}(S)$$C_2\times F_{19}$, of order \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_{38}$, of order \(76\)\(\medspace = 2^{2} \cdot 19 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{38}.D_4$
Normal closure:$C_{38}.D_4$
Core:$C_{19}$
Minimal over-subgroups:$C_{38}:C_4$
Maximal under-subgroups:$C_{38}$$C_4$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$(C_2\times C_4).D_{76}$