Properties

Label 1216.338.152.c1.a1
Order $ 2^{3} $
Index $ 2^{3} \cdot 19 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}b^{2}cd^{19}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{76}$
Order: \(1216\)\(\medspace = 2^{6} \cdot 19 \)
Exponent: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{76}$
Order: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Exponent: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Automorphism Group: $D_4\times F_{19}$, of order \(2736\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 19 \)
Outer Automorphisms: $C_2\times C_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}.(C_{18}\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5472\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 19 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{76}$
Normalizer:$(C_2\times C_4).D_{76}$
Minimal over-subgroups:$C_2\times C_{76}$$C_2\times D_4$$C_4:C_4$$\OD_{16}$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Möbius function$0$
Projective image$C_2^2.D_{76}$