Subgroup ($H$) information
Description: | $C_2\times C_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(152\)\(\medspace = 2^{3} \cdot 19 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$a^{2}b^{2}cd^{19}, b^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $(C_2\times C_4).D_{76}$ |
Order: | \(1216\)\(\medspace = 2^{6} \cdot 19 \) |
Exponent: | \(152\)\(\medspace = 2^{3} \cdot 19 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_{76}$ |
Order: | \(152\)\(\medspace = 2^{3} \cdot 19 \) |
Exponent: | \(76\)\(\medspace = 2^{2} \cdot 19 \) |
Automorphism Group: | $D_4\times F_{19}$, of order \(2736\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 19 \) |
Outer Automorphisms: | $C_2\times C_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{19}.(C_{18}\times D_4).C_2^4$ |
$\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(5472\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 19 \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_2\times C_{76}$ | |||
Normalizer: | $(C_2\times C_4).D_{76}$ | |||
Minimal over-subgroups: | $C_2\times C_{76}$ | $C_2\times D_4$ | $C_4:C_4$ | $\OD_{16}$ |
Maximal under-subgroups: | $C_2^2$ | $C_4$ |
Other information
Möbius function | $0$ |
Projective image | $C_2^2.D_{76}$ |