Properties

Label 1216.13.32.b1.a1
Order $ 2 \cdot 19 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{38}$
Order: \(38\)\(\medspace = 2 \cdot 19 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(38\)\(\medspace = 2 \cdot 19 \)
Generators: $b^{4}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,19$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{76}.D_8$
Order: \(1216\)\(\medspace = 2^{6} \cdot 19 \)
Exponent: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $Q_8:C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $D_4\times C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{18}\times D_4^2$
$\operatorname{Aut}(H)$ $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{76}.D_8$
Normalizer:$C_{76}.D_8$
Minimal over-subgroups:$C_2\times C_{38}$$C_{76}$$C_{76}$
Maximal under-subgroups:$C_{19}$$C_2$

Other information

Möbius function$0$
Projective image$Q_8:C_4$