Properties

Label 12130560.b.468.A
Order $ 2^{6} \cdot 3^{4} \cdot 5 $
Index $ 2^{2} \cdot 3^{2} \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C(2,3)$
Order: \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
Index: \(468\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 13 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrrrr} 2 & 0 & 0 & 1 & 2 & 0 \\ 2 & 0 & 1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 & 2 & 2 \\ 1 & 0 & 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 & 2 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 2 \\ 2 & 0 & 1 & 1 & 1 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $C_2\times \PSL(4,3)$
Order: \(12130560\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 5 \cdot 13 \)
Exponent: \(4680\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(24261120\)\(\medspace = 2^{9} \cdot 3^{6} \cdot 5 \cdot 13 \)
$\operatorname{Aut}(H)$ $\SO(5,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$117$
Möbius function not computed
Projective image not computed