Properties

Label 1200.917.300.a1
Order $ 2^{2} $
Index $ 2^{2} \cdot 3 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(2\)
Generators: $a, c^{30}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_{10}\times D_{60}$
Order: \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5\times D_{30}$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $D_{30}:C_4^2$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2\times C_4^2$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2\times C_4^2\times C_2\wr C_2^2)$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(15360\)\(\medspace = 2^{10} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}\times D_{60}$
Normalizer:$C_{10}\times D_{60}$
Minimal over-subgroups:$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_6$$C_2\times C_4$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-30$
Projective image$C_5\times D_{30}$