Subgroup ($H$) information
| Description: | $C_3$ | 
| Order: | \(3\) | 
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Exponent: | \(3\) | 
| Generators: | $c^{20}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_6\times D_{10}$ | 
| Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2\times D_{10}$ | 
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) | 
| Automorphism Group: | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) | 
| Outer Automorphisms: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) | 
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $C_6\times D_{10}$ | |||||||
| Normalizer: | $C_6\times D_{10}$ | |||||||
| Complements: | $C_2\times D_{10}$ | |||||||
| Minimal over-subgroups: | $C_{15}$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | 
| Maximal under-subgroups: | $C_1$ | 
Other information
| Möbius function | $40$ | 
| Projective image | $C_2\times D_{10}$ | 
