Properties

Label 1188.39.2.a1.a1
Order $ 2 \cdot 3^{3} \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{99}$
Order: \(594\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \)
Index: \(2\)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Generators: $a, c^{9}, c^{66}, c^{88}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $S_3\times D_{99}$
Order: \(1188\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_{99}).C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $D_6\times C_{30}$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_6\times C_{30}$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(99\)\(\medspace = 3^{2} \cdot 11 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{99}$
Normalizer:$S_3\times D_{99}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$S_3\times D_{99}$
Maximal under-subgroups:$C_3\times C_{99}$$S_3\times C_{33}$$C_{198}$$S_3\times C_9$

Other information

Möbius function$-1$
Projective image$S_3\times D_{99}$