Properties

Label 1184.228.592.a1.e1
Order $ 2 $
Index $ 2^{4} \cdot 37 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(592\)\(\medspace = 2^{4} \cdot 37 \)
Exponent: \(2\)
Generators: $ab^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2\times C_{74}:C_8$
Order: \(1184\)\(\medspace = 2^{5} \cdot 37 \)
Exponent: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{74}:C_8$
Order: \(592\)\(\medspace = 2^{4} \cdot 37 \)
Exponent: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Automorphism Group: $C_{74}.C_{36}.C_2^2$
Outer Automorphisms: $D_4\times C_9$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$Q_8:C_2^2.C_{37}.(C_{36}\times S_3)$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(42624\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 37 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{74}:C_8$
Normalizer:$C_2\times C_{74}:C_8$
Complements:$C_{74}:C_8$ $C_{74}:C_8$ $C_{74}:C_8$ $C_{74}:C_8$
Minimal over-subgroups:$C_{74}$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1184.228.592.a1.a11184.228.592.a1.b11184.228.592.a1.c11184.228.592.a1.d11184.228.592.a1.f1

Other information

Möbius function$0$
Projective image$C_{74}:C_8$