Properties

Label 1184.212.296.b1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 37 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{37}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_{148}:C_8$
Order: \(1184\)\(\medspace = 2^{5} \cdot 37 \)
Exponent: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{37}:C_8$
Order: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Exponent: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Automorphism Group: $C_2\times F_{37}$, of order \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \)
Outer Automorphisms: $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{74}.C_{18}.C_4.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(10656\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 37 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{148}:C_4$
Normalizer:$C_{148}:C_8$
Complements:$C_{37}:C_8$ $C_{37}:C_8$
Minimal over-subgroups:$C_{148}$$C_2\times C_4$
Maximal under-subgroups:$C_2$
Autjugate subgroups:1184.212.296.b1.b1

Other information

Möbius function$0$
Projective image$C_{74}:C_8$