Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(296\)\(\medspace = 2^{3} \cdot 37 \) |
Exponent: | \(2\) |
Generators: |
$a^{4}c^{37}, b$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $C_{74}.\OD_{16}$ |
Order: | \(1184\)\(\medspace = 2^{5} \cdot 37 \) |
Exponent: | \(296\)\(\medspace = 2^{3} \cdot 37 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_{37}:C_8$ |
Order: | \(296\)\(\medspace = 2^{3} \cdot 37 \) |
Exponent: | \(296\)\(\medspace = 2^{3} \cdot 37 \) |
Automorphism Group: | $C_2\times F_{37}$, of order \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \) |
Outer Automorphisms: | $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{74}.C_{18}.C_4.C_2^3$ |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(10656\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 37 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_{74}:C_8$ |