Properties

Label 118206.b.297.a1.a1
Order $ 2 \cdot 199 $
Index $ 3^{3} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{199}$
Order: \(398\)\(\medspace = 2 \cdot 199 \)
Index: \(297\)\(\medspace = 3^{3} \cdot 11 \)
Exponent: \(398\)\(\medspace = 2 \cdot 199 \)
Generators: $a^{99}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_3\times F_{199}$
Order: \(118206\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_3\times C_{99}$
Order: \(297\)\(\medspace = 3^{3} \cdot 11 \)
Exponent: \(99\)\(\medspace = 3^{2} \cdot 11 \)
Automorphism Group: $C_5\times C_6^2:S_3$, of order \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Outer Automorphisms: $C_5\times C_6^2:S_3$, of order \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{199}:(C_{11}:(C_{18}\times S_3))$
$\operatorname{Aut}(H)$ $F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
$W$$F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times F_{199}$
Complements:$C_3\times C_{99}$
Minimal over-subgroups:$C_{199}:C_{22}$$C_3\times D_{199}$$C_{199}:C_6$$C_{199}:C_6$$C_{199}:C_6$
Maximal under-subgroups:$C_{199}$$C_2$

Other information

Möbius function$0$
Projective image$C_3\times F_{199}$