Properties

Label 118206.a.2.a1.a1
Order $ 3^{3} \cdot 11 \cdot 199 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{597}:C_{99}$
Order: \(59103\)\(\medspace = 3^{3} \cdot 11 \cdot 199 \)
Index: \(2\)
Exponent: \(19701\)\(\medspace = 3^{2} \cdot 11 \cdot 199 \)
Generators: $a^{132}, b^{3}, a^{18}, b^{199}, a^{110}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{1194}:C_{99}$
Order: \(118206\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{199}:(C_{11}:(C_{18}\times S_3))$
$\operatorname{Aut}(H)$ $C_{199}:(C_{11}:(C_{18}\times S_3))$
$W$$C_{199}:C_{99}$, of order \(19701\)\(\medspace = 3^{2} \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{1194}:C_{99}$
Complements:$C_2$
Minimal over-subgroups:$C_{1194}:C_{99}$
Maximal under-subgroups:$C_{597}:C_{33}$$C_{199}:C_{99}$$C_{199}:C_{99}$$C_{199}:C_{99}$$C_{597}:C_9$$C_3\times C_{99}$

Other information

Möbius function$-1$
Projective image$C_{199}:C_{198}$