Properties

Label 1177.1.11.a1.a1
Order $ 107 $
Index $ 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{107}$
Order: \(107\)
Index: \(11\)
Exponent: \(107\)
Generators: $a^{11}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $107$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{1177}$
Order: \(1177\)\(\medspace = 11 \cdot 107 \)
Exponent: \(1177\)\(\medspace = 11 \cdot 107 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 11,107$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{11}$
Order: \(11\)
Exponent: \(11\)
Automorphism Group: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{530}$, of order \(1060\)\(\medspace = 2^{2} \cdot 5 \cdot 53 \)
$\operatorname{Aut}(H)$ $C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{1177}$
Normalizer:$C_{1177}$
Complements:$C_{11}$
Minimal over-subgroups:$C_{1177}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-1$
Projective image$C_{11}$