Properties

Label 1176.141.196.a1.a1
Order $ 2 \cdot 3 $
Index $ 2^{2} \cdot 7^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{14}, c^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_{42}.D_{14}$
Order: \(1176\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $D_7^2$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_7\wr C_2$, of order \(3528\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Outer Automorphisms: $C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(14112\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{42}.D_{14}$
Normalizer:$C_{42}.D_{14}$
Minimal over-subgroups:$C_{42}$$C_{42}$$C_{42}$$C_{42}$$C_{42}$$C_2\times C_6$$C_{12}$$C_{12}$
Maximal under-subgroups:$C_3$$C_2$

Other information

Möbius function$98$
Projective image$D_7^2$