Properties

Label 11664.jb.4.f1
Order $ 2^{2} \cdot 3^{6} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5:D_6$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(2,4,7,3,6,8)(10,12,13), (3,4,8), (12,13), (1,7,3)(2,4,9)(5,6,8)(10,13,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^5:(S_3\times D_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times C_3^4.C_{12}.C_2^4$
$\operatorname{Aut}(H)$ $C_3^5.D_6^2$
$W$$S_3\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^3:S_3^3$
Normal closure:$C_3^3:S_3^3$
Core:$C_3^5:S_3$
Minimal over-subgroups:$C_3^3:S_3^3$
Maximal under-subgroups:$C_3^5:S_3$$C_3^5:C_6$$C_3^5:S_3$$C_3^4:D_6$$C_3^3\times S_3^2$$C_3^3:S_3^2$$C_3^3:S_3^2$$C_3^3:S_3^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3^4:(C_6\times D_4)$