Properties

Label 11664.hr.4.b1
Order $ 2^{2} \cdot 3^{6} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:S_3^2$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,16,18)(8,15,11), (3,13,6)(9,17,10), (1,18,11)(2,6,10)(3,17,12)(4,15,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_2\times \He_3^2:D_4$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^4.D_4.C_2^4$
$\operatorname{Aut}(H)$ $C_3^3:\SOPlus(4,2).S_4$, of order \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
$W$$C_3^3:\SOPlus(4,2)$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times \He_3^2:D_4$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$\He_3^2:C_2^3$$\He_3^2:D_4$
Maximal under-subgroups:$\He_3^2:C_2$$\He_3\wr C_2$$C_3^3:S_3^2$$C_3^3:S_3^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$2$
Projective image$C_2\times \He_3^2:D_4$