Subgroup ($H$) information
| Description: | $C_3^4:S_3^2$ |
| Order: | \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(4,16,18)(8,15,11), (3,13,6)(9,17,10), (1,18,11)(2,6,10)(3,17,12)(4,15,7) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is normal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_2\times \He_3^2:D_4$ |
| Order: | \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^2.C_3^4.D_4.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_3^3:\SOPlus(4,2).S_4$, of order \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \) |
| $W$ | $C_3^3:\SOPlus(4,2)$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $2$ |
| Projective image | $C_2\times \He_3^2:D_4$ |