Properties

Label 11664.hr.4.a1
Order $ 2^{2} \cdot 3^{6} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $\langle(4,16,18)(8,15,11), (3,13,6)(9,17,10), (1,18,11)(2,6,10)(3,17,12)(4,15,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and supersolvable (hence solvable and monomial). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2\times \He_3^2:D_4$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^4.D_4.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$C_3^4:D_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_2\times \He_3^2:D_4$
Minimal over-subgroups:$\He_3^2:C_2^3$$C_3^4.C_3^2.C_2^3$$C_2\times \He_3^2:C_4$
Maximal under-subgroups:$C_2\times \He_3^2$$\He_3^2:C_2$$\He_3^2:C_2$$C_3^4:D_6$$C_3^4:D_6$$C_3^4:D_6$$C_3^4:D_6$$C_3^4:D_6$$C_3^4:D_6$$C_3^4:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$\He_3^2:D_4$