Properties

Label 11664.hr.24.bc1
Order $ 2 \cdot 3^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,16,18)(8,15,11), (1,18,11)(2,6,17)(3,9,12)(4,15,7)(5,16,8)(10,14,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_2\times \He_3^2:D_4$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^4.D_4.C_2^4$
$\operatorname{Aut}(H)$ $C_3^6.C_3:S_3.(C_6\times S_4).C_2$
$\card{W}$\(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_3^4.C_3^2.C_2^3$
Normal closure:$C_3^4.C_3^2.C_2^3$
Core:$C_3^4$
Minimal over-subgroups:$\He_3^2:C_2$$C_3^4:D_6$$C_3^3:S_3^2$$C_3^3:S_3^2$
Maximal under-subgroups:$C_3^2\times \He_3$$C_3^3:C_6$$C_3^3:C_6$$C_3^3:C_6$$C_3^3:C_6$$C_3^3:C_6$$C_3^3:S_3$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_2\times \He_3^2:D_4$