Subgroup ($H$) information
| Description: | $C_3^2\times C_6$ |
| Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Index: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,5,7)(8,11,15)(19,20), (4,16,18)(8,15,11), (1,7,5)(4,16,18)(8,11,15), (2,13,9)(3,17,14)(6,10,12)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_2\times \He_3^2:D_4$ |
| Order: | \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^2.C_3^4.D_4.C_2^4$ |
| $\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) |
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $12$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $\He_3^2:D_4$ |