Subgroup ($H$) information
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(2,9,13)(3,14,17)(6,12,10)(19,20), (2,13,9)(3,17,14)(6,10,12)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_2\times \He_3^2:D_4$ |
Order: | \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^2.C_3^4.D_4.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $12$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $\He_3^2:D_4$ |