Properties

Label 11664.hr.144.b1
Order $ 3^{4} $
Index $ 2^{4} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \He_3$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(3\)
Generators: $\langle(1,18,11)(2,9,3)(4,15,7)(5,16,8)(6,14,17)(10,13,12), (1,5,7)(2,12,14)(3,13,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times \He_3^2:D_4$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3^2:C_2^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_6^2:\SD_{16}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^4.D_4.C_2^4$
$\operatorname{Aut}(H)$ $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$W$$C_3^4:D_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_2\times \He_3^2:D_4$
Complements:$S_3^2:C_2^2$
Minimal over-subgroups:$C_3^4:C_3$$C_3^4:C_3$$C_6\times \He_3$$C_3^3:C_6$$C_3^3:S_3$$C_3^3:S_3$$C_3^3:C_6$
Maximal under-subgroups:$C_3^3$$C_3^3$$\He_3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2\times \He_3^2:D_4$