Properties

Label 11664.bi.8.c1
Order $ 2 \cdot 3^{6} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5:S_3$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(7,9,8)(16,17,18), (1,7)(2,9)(3,8)(4,14,6,13,5,15)(10,16,12,17,11,18), (1,3,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3^5.S_3^3$, of order \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \)
$W$$C_3^4:D_6$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^5:D_6$
Normal closure:$C_3^5:S_4$
Core:$C_3^5$
Minimal over-subgroups:$C_3^5:S_4$$C_3^5:D_6$
Maximal under-subgroups:$C_3^5:C_3$$C_3^4:C_6$$C_3^4:S_3$$C_3^4:S_3$$C_3^4:S_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3^5:(C_2\times S_4)$