Properties

Label 11664.bi.216.dq1
Order $ 2 \cdot 3^{3} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_3^2$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(7,9,8)(16,17,18), (1,3,2)(10,11,12), (1,2,3)(4,5,6)(7,8,9)(10,12,11)(13,14,15)(16,18,17), (1,11)(2,10)(3,12)(4,7,5,9,6,8)(13,16,14,17,15,18)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$S_3\times C_3^2$
Normalizer:$C_3\times S_3^3$
Normal closure:$C_3^4:S_4$
Core:$C_3^3$
Minimal over-subgroups:$S_3\times C_3^3$$C_3^2\wr C_2$$C_3\wr S_3$$C_3^2\times D_6$$C_3\times S_3^2$$C_3\times S_3^2$
Maximal under-subgroups:$C_3^3$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_3\times S_3$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^5:(C_2\times S_4)$