Properties

Label 11664.bi.12.l1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\wr A_4$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,11,3,10,2,12)(7,18,9,17,8,16)(13,14,15), (1,11,2,12,3,10)(4,14,5,13,6,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $S_3^4:S_3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
$W$$C_3^4:S_4$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^5:S_4$
Normal closure:$C_3^5:A_4$
Core:$C_3\wr C_2^2$
Minimal over-subgroups:$C_3^5:A_4$$C_3\wr S_4$
Maximal under-subgroups:$C_3\wr C_2^2$$C_3^3:A_4$$C_3^4:C_3$$C_3\times A_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^5:(C_2\times S_4)$