Properties

Label 11664.bi.12.k1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_{12}$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,11,3,10,2,12)(7,18,9,17,8,16)(13,14,15), (1,7,10,18,3,8,12,16,2,9,11,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3:S_3.C_6^2.C_{12}.C_2^4$
$W$$S_3^3:S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^4:(S_3\times D_4)$
Normal closure:$C_3^5:S_4$
Core:$C_3^5$
Minimal over-subgroups:$C_3^4:(C_4\times S_3)$$C_3^4:D_{12}$$C_3^5:D_4$
Maximal under-subgroups:$C_3^4:C_6$$C_3^4:C_4$$C_3\wr C_4$$C_3\wr C_4$$C_3\wr C_4$$C_3^2:C_{12}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^5:(C_2\times S_4)$