Properties

Label 11664.bg.432.a1
Order $ 3^{3} $
Index $ 2^{4} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(3\)
Generators: $\langle(7,8,9)(16,18,17), (4,5,6)(7,8,9)(13,14,15)(16,18,17), (1,3,2)(7,9,8)(10,11,12)(16,17,18)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6^2:D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_3^5$
Normalizer:$C_3^5:(C_2\times S_4)$
Complements:$C_6^2:D_6$
Minimal over-subgroups:$C_3^4$$C_3^4$$C_3\wr C_3$$C_3\wr C_3$$C_3^2:C_6$$S_3\times C_3^2$$S_3\times C_3^2$$C_3^2:C_6$$C_3^2:S_3$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^5:(C_2\times S_4)$