Properties

Label 11664.bf.72.ba1
Order $ 2 \cdot 3^{4} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:C_6$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3,2)(10,11,12), (4,5,6)(7,8,9)(13,14,15)(16,18,17), (2,3)(4,9,5,8,6,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_2\times C_3^3:\GL(3,3)$, of order \(606528\)\(\medspace = 2^{6} \cdot 3^{6} \cdot 13 \)
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^2:S_3^3$
Normal closure:$C_3^5:S_4$
Core:$C_3^2$
Minimal over-subgroups:$C_3^4:C_6$$C_3^2:S_3^2$$C_3^2:S_3^2$$C_3^2:S_3^2$
Maximal under-subgroups:$C_3^4$$C_3^2:C_6$$C_3^2:C_6$$C_3^2:C_6$$C_3^2:C_6$$C_3^2:C_6$$C_3^2:C_6$$C_3^2:C_6$$C_3^2:S_3$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^5:(C_2\times S_4)$