Properties

Label 11664.bf.6.a1
Order $ 2^{3} \cdot 3^{5} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:S_3^3$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,11)(2,12)(3,10)(4,5,6)(7,18)(8,16)(9,17)(13,14,15), (4,5,6)(7,8,9)(13,14,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3^5.Q_8.(C_2\times S_3\times S_4)$
$W$$C_3^5:(C_2\times S_4)$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^5:(C_2\times S_4)$
Complements:$S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_3\wr A_4:S_3$$C_3^3:(S_3\times D_{12})$
Maximal under-subgroups:$C_3^3:C_6^2$$C_3^3:S_3^2$$C_3^3:S_3^2$$C_3:S_3^3$$C_3:S_3^3$$C_3:S_3^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$3$
Projective image$C_3^5:(C_2\times S_4)$