Subgroup ($H$) information
Description: | $C_3^2:S_3^3$ |
Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(1,11)(2,12)(3,10)(4,5,6)(7,18)(8,16)(9,17)(13,14,15), (4,5,6)(7,8,9)(13,14,15) \!\cdots\! \rangle$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_3^5:(C_2\times S_4)$ |
Order: | \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $S_3$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
$\operatorname{Aut}(H)$ | $C_3^5.Q_8.(C_2\times S_3\times S_4)$ |
$W$ | $C_3^5:(C_2\times S_4)$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $3$ |
Projective image | $C_3^5:(C_2\times S_4)$ |