Subgroup ($H$) information
| Description: | $D_{14}$ | 
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Index: | \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \) | 
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Generators: | $b^{3}d^{12}e^{6}f^{5}, c^{2}f^{6}, c^{7}d^{4}$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $D_7\times C_7^3:S_4$ | 
| Order: | \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^3.(C_7\times A_4).C_6^2.C_2$ | 
| $\operatorname{Aut}(H)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| $W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $147$ | 
| Möbius function | $0$ | 
| Projective image | $D_7\times C_7^3:S_4$ | 
