Properties

Label 115248.bg.2744.c1.a1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2^{3} \cdot 7^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_7$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(2744\)\(\medspace = 2^{3} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $b^{3}d^{12}e^{6}f^{5}, c^{2}f^{6}, b^{2}c^{7}d^{7}e^{5}f^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_{21}$
Normalizer:$C_{21}:D_{14}$
Normal closure:$C_7^3:A_4\times D_7$
Core:$D_7$
Minimal over-subgroups:$D_7\times C_{21}$$C_7^2:C_6$$A_4\times D_7$$S_3\times D_7$
Maximal under-subgroups:$C_{21}$$D_7$$C_6$

Other information

Number of subgroups in this conjugacy class$196$
Möbius function$-7$
Projective image$D_7\times C_7^3:S_4$