Properties

Label 11520.ec.480.cc1
Order $ 2^{3} \cdot 3 $
Index $ 2^{5} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,9)(10,14,11,15)(12,13), (10,11)(14,15), (2,4,5)(10,11)(14,15), (6,7)(8,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2^5:C_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_2\wr C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times C_{12}$
Normalizer:$C_{12}:C_2^5$
Normal closure:$C_4\times C_2^2\times A_5$
Core:$C_2$
Minimal over-subgroups:$C_2^3:C_{12}$$C_2^2\times C_{12}$$C_6\times D_4$$C_2^2\times C_{12}$$C_4\times D_6$$C_4\times D_6$$C_2\times D_{12}$$C_4\times D_6$$C_4\times D_6$$C_2^2\times C_{12}$
Maximal under-subgroups:$C_2\times C_6$$C_{12}$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2^5:\GL(2,4)$