Properties

Label 11520.ec.360.ik1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(10,11)(14,15), (8,9)(10,14,11,15), (2,5)(3,4)(6,7)(8,9)(12,13)(14,15), (6,7)(8,9), (8,9)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^5:C_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_2\wr C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$W$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^6$
Normalizer:$C_2^7:C_6$
Normal closure:$C_2^2\times D_4\times A_5$
Core:$C_2^2\times C_4$
Minimal over-subgroups:$C_2^2\times D_{20}$$D_4\times A_4$$C_2^2\times D_{12}$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$
Maximal under-subgroups:$C_2^2\times C_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2^4$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_2^5:\GL(2,4)$